Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.169
Filtrar
1.
Am J Respir Crit Care Med ; 207(6): 731-739, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191254

RESUMO

Rationale: Sonographic septations are assumed to be important clinical predictors of outcome in pleural infection, but the evidence for this is sparse. The inflammatory and fibrinolysis-associated intrapleural pathway(s) leading to septation formation have not been studied in a large cohort of pleural fluid (PF) samples with confirmed pleural infection matched with ultrasound and clinical outcome data. Objectives: To assess the presence and severity of septations against baseline PF PAI-1 (Plasminogen-Activator Inhibitor-1) and other inflammatory and fibrinolysis-associated proteins as well as to correlate these with clinically important outcomes. Methods: We analyzed 214 pleural fluid samples from PILOT (Pleural Infection Longitudinal Outcome Study), a prospective observational pleural infection study, for inflammatory and fibrinolysis-associated proteins using the Luminex platform. Multivariate regression analyses were used to assess the association of pleural biological markers with septation presence and severity (on ultrasound) and clinical outcomes. Measurements and Main Results: PF PAI-1 was the only protein independently associated with septation presence (P < 0.001) and septation severity (P = 0.003). PF PAI-1 concentrations were associated with increased length of stay (P = 0.048) and increased 12-month mortality (P = 0.003). Sonographic septations alone had no relation to clinical outcomes. Conclusions: In a large and well-characterized cohort, this is the first study to associate pleural biological parameters with a validated sonographic septation outcome in pleural infection. PF PAI-1 is the first biomarker to demonstrate an independent association with mortality. Although PF PAI-1 plays an integral role in driving septation formation, septations themselves are not associated with clinically important outcomes. These novel findings now require prospective validation.


Assuntos
Infecções , Inibidor 1 de Ativador de Plasminogênio , Doenças Pleurais , Humanos , Fibrinólise , Infecções/metabolismo , Inibidor 1 de Ativador de Plasminogênio/análise , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pleura/diagnóstico por imagem , Pleura/metabolismo , Doenças Pleurais/diagnóstico por imagem , Doenças Pleurais/metabolismo , Derrame Pleural/genética , Estudos Prospectivos , Ativador de Plasminogênio Tecidual/análise , Ativador de Plasminogênio Tecidual/metabolismo , Ultrassonografia
3.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883569

RESUMO

Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Modelos Animais de Doenças , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Infecções/metabolismo , Inflamação/metabolismo , Camundongos , Receptores de Glucocorticoides/metabolismo
4.
Immunol Res ; 70(5): 667-677, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764901

RESUMO

Infection is one of the main causes of death in cancer patients. Accurate identification of fever caused by infection could avoid unnecessary antibiotic treatment and hospitalization. This study evaluated the diagnostic value of procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), and other commonly used inflammatory markers in suspected infected adult cancer patients with fever, for better use of antibiotics. This research retrospective analyzed the clinical data of 102 adult cancer patients with fever and compared the serum levels of commonly used inflammatory markers for different fever reasons. Receiver-operating characteristic (ROC) curve and logistic regression analyses were performed. In adult cancer patients with fever, the serum PCT, CRP, IL-6, and IL-10 levels of infected patients were significantly higher than uninfected patients (median 1.19 ng/ml vs 0.14 ng/ml, 93.11 mg/l vs 56.55 mg/l, 123.74 pg/ml vs 47.35 pg/ml, 8.74 pg/ml vs 3.22 pg/ml; Mann-Whitney p = 0.000, p = 0.009, p = 0.004, p = 0.000, respectively). The ROC area under the curve(AUC) was 0.769 (95% confidence interval (CI) 0.681-0.857; p = 0.000) for PCT, 0.664 (95% CI 0.554-0.775; p = 0.009) for CRP, 0.681(95% CI 0.576-0.785; p = 0.004) for IL-6, and 0.731(95% CI 0.627-0.834; p = 0.000) for IL-10. PCT had specificity of 96.67% and positive predictive value (PPV) of 97.6%, when the cut-off value is set as 0.69 ng/ml. The serum IL-6 and IL-10 levels also had significant differences between the infected and uninfected cancer patients with advanced disease (median 128.92 pg/ml vs 36.40 pg/ml, 8.05 pg/ml vs 2.92 pg/ml; Mann-Whitney p = 0.003, p = 0.001, respectively). For the patients with neutropenia, IL-6 and IL-10 had higher AUC of 0.811 and 0.928, respectively. With a cut-off of 9.10 pg/ml, IL-10 had the highest sensitivity 83.33% and specificity 100%. In adult cancer patients, PCT had the best performance compared to CRP, IL-6, and IL-10 in differentiating infected from uninfected causes of fever, with high specificity and PPV. IL-6 and IL-10 might be useful in cancer patients with severe bloodstream infections and advanced disease. However, for patients with neutropenia, IL-10 might be more valuable than PCT in diagnosing infection.


Assuntos
Febre , Interleucina-10 , Neoplasias , Neutropenia , Adulto , Antibacterianos/uso terapêutico , Biomarcadores , Proteína C-Reativa/imunologia , Calcitonina , Febre/imunologia , Hospitalização , Humanos , Infecções/etiologia , Infecções/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Neoplasias/complicações , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neutropenia/tratamento farmacológico , Neutropenia/metabolismo , Pró-Calcitonina/metabolismo , Curva ROC , Estudos Retrospectivos
5.
Front Immunol ; 13: 780839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154105

RESUMO

Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.


Assuntos
Infecções/imunologia , Infecções/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , COVID-19/imunologia , Humanos , Imunidade Inata/imunologia , SARS-CoV-2
6.
Sci Rep ; 12(1): 3054, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197508

RESUMO

Pleural effusion (PE) is excess fluid in the pleural cavity that stems from lung cancer, other diseases like extra-pulmonary tuberculosis (TB) and pneumonia, or from a variety of benign conditions. Diagnosing its cause is often a clinical challenge and we have applied targeted proteomic methods with the aim of aiding the determination of PE etiology. We developed a mass spectrometry (MS)-based multiple reaction monitoring (MRM)-protein-panel assay to precisely quantitate 53 established cancer-markers, TB-markers, and infection/inflammation-markers currently assessed individually in the clinic, as well as potential biomarkers suggested in the literature for PE classification. Since MS-based proteomic assays are on the cusp of entering clinical use, we assessed the merits of such an approach and this marker panel based on a single-center 209 patient cohort with established etiology. We observed groups of infection/inflammation markers (ADA2, WARS, CXCL10, S100A9, VIM, APCS, LGALS1, CRP, MMP9, and LDHA) that specifically discriminate TB-PEs and other-infectious-PEs, and a number of cancer markers (CDH1, MUC1/CA-15-3, THBS4, MSLN, HPX, SVEP1, SPINT1, CK-18, and CK-8) that discriminate cancerous-PEs. Some previously suggested potential biomarkers did not show any significant difference. Using a Decision Tree/Multiclass classification method, we show a very good discrimination ability for classifying PEs into one of four types: cancerous-PEs (AUC: 0.863), tuberculous-PEs (AUC of 0.859), other-infectious-PEs (AUC of 0.863), and benign-PEs (AUC: 0.842). This type of approach and the indicated markers have the potential to assist in clinical diagnosis in the future, and help with the difficult decision on therapy guidance.


Assuntos
Infecções/diagnóstico , Neoplasias Pulmonares/diagnóstico , Espectrometria de Massas/métodos , Derrame Pleural/diagnóstico , Pneumonia/diagnóstico , Proteômica/métodos , Tuberculose/diagnóstico , Biomarcadores/análise , Humanos , Infecções/metabolismo , Neoplasias Pulmonares/metabolismo , Cavidade Pleural/química , Derrame Pleural/classificação , Derrame Pleural/metabolismo , Pneumonia/metabolismo , Curva ROC , Tuberculose/metabolismo
7.
Mol Med ; 28(1): 10, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093033

RESUMO

BACKGROUND: Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT: It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION: Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.


Assuntos
Biofilmes , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Interações Hospedeiro-Patógeno , Infecções/etiologia , Infecções/metabolismo , Neoplasias/complicações , Animais , Biofilmes/crescimento & desenvolvimento , Biomarcadores , Gerenciamento Clínico , Metabolismo Energético , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Infecções/diagnóstico , Infecções/terapia , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/terapia , Especificidade de Órgãos
8.
Immunology ; 165(1): 44-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716913

RESUMO

Cytokines are considered vital mediators of the immune system. Down- or upregulation of these mediators is linked to several inflammatory and pathologic situations. IL-26 is referred to as an identified member of the IL-10 family and IL-20 subfamily. Due to having a unique cationic structure, IL-26 exerts diverse functions in several diseases. Since IL-26 is mainly secreted from Th17, it is primarily considered a pro-inflammatory cytokine. Upon binding to its receptor complex (IL-10R1/IL-20R2), IL-26 activates multiple signalling mediators, especially STAT1/STAT3. In cancer, IL-26 induces IL-22-producing cells, which consequently decrease cytotoxic T-cell functions and promote tumour growth through activating anti-apoptotic proteins. In hypersensitivity conditions such as rheumatoid arthritis, multiple sclerosis, psoriasis and allergic disease, this cytokine functions primarily as the disease-promoting mediator and might be considered a biomarker for disease prognosis. Although IL-26 exerts antimicrobial function in infections such as hepatitis, tuberculosis and leprosy, it has also been shown that IL-26 might be involved in the pathogenesis and exacerbation of sepsis. Besides, the involvement of IL-26 has been confirmed in other conditions, including graft-versus-host disease and chronic obstructive pulmonary disease. Therefore, due to the multifarious function of this cytokine, it is proposed that the underlying mechanism regarding IL-26 function should be elucidated. Collectively, it is hoped that the examination of IL-26 in several contexts might be promising in predicting disease prognosis and might introduce novel approaches in the treatment of various diseases.


Assuntos
Suscetibilidade a Doenças , Interleucinas/genética , Interleucinas/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Infecções/etiologia , Infecções/metabolismo , Infecções/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Interleucinas/química , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768767

RESUMO

Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell's needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.


Assuntos
Infecções/metabolismo , Inflamação/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/microbiologia , Animais , Metabolismo Energético , Humanos , Infecções/tratamento farmacológico , Inflamação/tratamento farmacológico , Mitocôndrias/metabolismo , Dinâmica Mitocondrial
10.
Int Immunopharmacol ; 101(Pt A): 108297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34717202

RESUMO

The P2X7 receptor (P2X7R) is a ligand-gated receptor belonging to the P2 receptor family. It is distributed in various tissues of the human body and is involved in regulating the physiological functions of tissues and cells to affect the occurrence and development of diseases. Unlike all other P2 receptors, the P2X7 receptor is mainly expressed in immune cells and can be activated not only by extracellular nucleotides but also by non-nucleotide substances which act as positive allosteric modulators. In this review, we comprehensively describe the role of the P2X7 receptor in infection and metabolism based on its role as an important regulator of inflammation and immunity, and briefly introduce the structure and general function of the P2X7 receptor. These provide a clear knowledge framework for the study of the P2X7 receptor in human health. Targeting the P2X7 receptor may be an effective method for the treatment of inflammatory and immune diseases. And its role in microbial infection and metabolism may be the main direction for in-depth research on the P2X7 receptor in the future.


Assuntos
Imunidade , Infecções/imunologia , Inflamação/imunologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Humanos , Imunidade/fisiologia , Infecções/metabolismo , Inflamação/metabolismo , Receptores Purinérgicos P2X7/fisiologia
11.
Curr Opin Immunol ; 72: 331-339, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543865

RESUMO

The binary view of inborn errors of immunity classified as either autoinflammatory conditions or primary immunodeficiency in the strict sense, that is, increased susceptibility to infection is challenged by the description of recent inborn errors of immunity (IEI) triggers leading to activation and disruption of cell death pathways, play a major part in the pathophysiology of infection and autoinflammation. In addition, molecules with a double role in the extracellular versus intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and approaches that can be used in other monogenic and polygenic/complex immune disorders.


Assuntos
Autoimunidade/genética , Predisposição Genética para Doença , Variação Genética , Imunidade/genética , Infecções/etiologia , Inflamação/etiologia , Alelos , Animais , Autoanticorpos/imunologia , Biomarcadores , Estresse do Retículo Endoplasmático , Genótipo , Humanos , Infecções/diagnóstico , Infecções/metabolismo , Inflamação/diagnóstico , Inflamação/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Mutação , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Fenótipo , Transdução de Sinais
12.
PLoS Comput Biol ; 17(8): e1009209, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343169

RESUMO

Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node's ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções/imunologia , Modelos Imunológicos , Imunidade Adaptativa , Algoritmos , Linfócitos T CD4-Positivos/metabolismo , Biologia Computacional , Simulação por Computador , Citocinas/imunologia , Humanos , Infecções/genética , Infecções/metabolismo , Influenza Humana/imunologia , Método de Monte Carlo , Dinâmica não Linear , Análise Espaço-Temporal , Análise de Sistemas , Biologia de Sistemas
13.
Vitam Horm ; 117: 253-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420584

RESUMO

The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.


Assuntos
Glicemia/imunologia , Glicemia/metabolismo , Sistema Endócrino/imunologia , Sistema Endócrino/metabolismo , Infecções/imunologia , Infecções/metabolismo , Humanos
14.
Dis Markers ; 2021: 5574472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257746

RESUMO

Regulatory T cells (Tregs) expressing the Foxp3 transcription factor are indispensable for the maintenance of immune system homeostasis. Tregs may lose Foxp3 expression or be reprogrammed into cells that produce proinflammatory cytokines, for example, Th1-like Tregs, Th2-like Tregs, Th17-like Tregs, and Tfh-like Tregs. Accordingly, selective therapeutic molecules that manipulate Treg lineage stability and/or functional activity might have the potential to improve aberrant immune responses in human disorders. In particular, the transcription factor Helios has emerged as an important marker and modulator of Tregs. Therefore, the current review focuses on recent findings on the expression, function, and mechanisms of Helios, as well as the patterns of Foxp3+ Tregs coexpressing Helios in various human disorders, in order to explore the potential of Helios for the improvement of many immune-related diseases. The studies were selected from PubMed using the library of the Nanjing Medical University in this review. The findings of the included studies indicate that Helios expression stabilizes the phenotype and function of Foxp3+ Tregs in certain inflammatory environments. Further, Tregs coexpressing Helios and Foxp3 were identified as a specific phenotype of stronger suppressor immune cells in both humans and animal models. Importantly, there is ample evidence that Helios-expressing Foxp3+ Tregs are relevant to various human disorders, including connective tissue diseases, infectious diseases, solid organ transplantation-related immunity, and cancer. Thus, Helios+Foxp3+CD4+ Tregs could be a valuable target in human diseases, and their potential should be explored further in the clinical setting.


Assuntos
Doenças Autoimunes/imunologia , Doenças do Tecido Conjuntivo/imunologia , Fatores de Transcrição Forkhead/imunologia , Fator de Transcrição Ikaros/imunologia , Infecções/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/metabolismo , Biomarcadores/metabolismo , Doenças do Tecido Conjuntivo/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Infecções/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/metabolismo , Transplante de Órgãos , Linfócitos T Reguladores/metabolismo
15.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201509

RESUMO

The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Infecções/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia , Animais , Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Homeostase , Humanos , Inflamassomos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Biossíntese de Proteínas , Receptores de Reconhecimento de Padrão/química
16.
Nutr Diabetes ; 11(1): 20, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34168115

RESUMO

Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Arg-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.


Assuntos
Aminoácidos/metabolismo , Imunidade Inata , Infecções/terapia , Animais , Anti-Infecciosos/uso terapêutico , Arginina/metabolismo , Humanos , Infecções/metabolismo , Inflamação/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
18.
Front Immunol ; 12: 667787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054837

RESUMO

Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.


Assuntos
Aphanomyces/patogenicidade , Astacoidea/parasitologia , Sistema Imunitário/parasitologia , Imunidade Inata , Infecções/veterinária , Animais , Aphanomyces/imunologia , Astacoidea/imunologia , Astacoidea/metabolismo , Água Doce , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Infecções/imunologia , Infecções/metabolismo , Infecções/parasitologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
19.
Nat Rev Immunol ; 21(11): 718-738, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981085

RESUMO

Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Infecções/metabolismo , Neoplasias/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Humanos , Infecções/imunologia , Ativação Linfocitária , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
20.
PLoS Biol ; 19(5): e3001182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979323

RESUMO

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Assuntos
Anopheles/efeitos dos fármacos , Glicina/análogos & derivados , Melaninas/metabolismo , Mariposas/efeitos dos fármacos , Animais , Anopheles/imunologia , Cryptococcus neoformans/patogenicidade , Dípteros/efeitos dos fármacos , Dípteros/imunologia , Glicina/metabolismo , Glicina/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Infecções/imunologia , Infecções/metabolismo , Infecções/fisiopatologia , Insetos/efeitos dos fármacos , Insetos/imunologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/imunologia , Mariposas/imunologia , Plasmodium falciparum/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...